PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psuball2v-P6

Theorem psuball2v-P6 796
Description: Proper Substitution Over Universal Quantifier (different variable - restriction on '𝑡').

'𝑦' cannot occur in '𝑡'.

Assertion
Ref Expression
psuball2v-P6 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝑡 / 𝑥]𝜑)
Distinct variable groups:   𝑡,𝑦   𝑥,𝑦

Proof of Theorem psuball2v-P6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 psubcomp-P6 767 . 2 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ [𝑡 / 𝑧][𝑧 / 𝑥]∀𝑦𝜑)
2 psuball2v-P6-L1 795 . . 3 ([𝑧 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝑧 / 𝑥]𝜑)
32psubleq-P6 783 . 2 ([𝑡 / 𝑧][𝑧 / 𝑥]∀𝑦𝜑 ↔ [𝑡 / 𝑧]∀𝑦[𝑧 / 𝑥]𝜑)
4 psuball2v-P6-L1 795 . 2 ([𝑡 / 𝑧]∀𝑦[𝑧 / 𝑥]𝜑 ↔ ∀𝑦[𝑡 / 𝑧][𝑧 / 𝑥]𝜑)
5 psubcomp-P6 767 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑧][𝑧 / 𝑥]𝜑)
65bisym-P3.33b.RC 299 . . 3 ([𝑡 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜑)
76suballinf-P5 594 . 2 (∀𝑦[𝑡 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ∀𝑦[𝑡 / 𝑥]𝜑)
81, 3, 4, 7tbitrns-P4.17.RC 431 1 ([𝑡 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝑡 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubex2v-P6  797  psuball2-P6  798
  Copyright terms: Public domain W3C validator