PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubcomp-P6

Theorem psubcomp-P6 767
Description: Composition of Proper Substitutions.

This can be taken as a definition of proper substitution for when '𝑥' occurs in '𝑡', given the definition where '𝑥' does not occur in '𝑡'.

'𝑦' cannot occur in either '𝜑' or '𝑡'.

Assertion
Ref Expression
psubcomp-P6 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem psubcomp-P6
StepHypRef Expression
1 lemma-L6.06a 766 . 2 𝑥[𝑦 / 𝑥]𝜑
2 lemma-L6.06a 766 . 2 𝑦[𝑡 / 𝑦][𝑦 / 𝑥]𝜑
3 psubtoisub-P6 765 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
4 psubtoisub-P6 765 . 2 (𝑦 = 𝑡 → ([𝑦 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑))
51, 2, 3, 4isubtopsub-P6 729 1 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psuball2v-P6  796  ndpsub4-P7.16  841
  Copyright terms: Public domain W3C validator