PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  isubtopsub-P6

Theorem isubtopsub-P6 729
Description: Conversion from Implicit to Explicit Substitution with Intermediate Formula.

'𝑦' cannot occur in either '𝜑' or '𝑡'.

If '𝑦' is a fresh variable that appears in the intermediate WFF '𝜓', then we can substitute '𝑡' for '𝑥' even when '𝑥' occurs in '𝑡'.

Hypotheses
Ref Expression
isubtopsub-P6.1 𝑥𝜓
isubtopsub-P6.2 𝑦𝜒
isubtopsub-P6.3 (𝑥 = 𝑦 → (𝜑𝜓))
isubtopsub-P6.4 (𝑦 = 𝑡 → (𝜓𝜒))
Assertion
Ref Expression
isubtopsub-P6 ([𝑡 / 𝑥]𝜑𝜒)
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem isubtopsub-P6
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 isubtopsub-P6.1 . . 3 𝑥𝜓
3 isubtopsub-P6.2 . . 3 𝑦𝜒
4 isubtopsub-P6.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
5 isubtopsub-P6.4 . . 3 (𝑦 = 𝑡 → (𝜓𝜒))
62, 3, 4, 5lemma-L6.03a 728 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ 𝜒)
71, 6bitrns-P3.33c.RC 303 1 ([𝑡 / 𝑥]𝜑𝜒)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubcomp-P6  767  psubvar1-P6  802
  Copyright terms: Public domain W3C validator