| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > isubtopsub-P6 | |||
| Description: Conversion from Implicit
to Explicit Substitution with Intermediate
Formula.
'𝑦' cannot occur in either '𝜑' or '𝑡'. If '𝑦' is a fresh variable that appears in the intermediate WFF '𝜓', then we can substitute '𝑡' for '𝑥' even when '𝑥' occurs in '𝑡'. |
| Ref | Expression |
|---|---|
| isubtopsub-P6.1 | ⊢ Ⅎ𝑥𝜓 |
| isubtopsub-P6.2 | ⊢ Ⅎ𝑦𝜒 |
| isubtopsub-P6.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| isubtopsub-P6.4 | ⊢ (𝑦 = 𝑡 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| isubtopsub-P6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psub-D6.2 716 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | isubtopsub-P6.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | isubtopsub-P6.2 | . . 3 ⊢ Ⅎ𝑦𝜒 | |
| 4 | isubtopsub-P6.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | isubtopsub-P6.4 | . . 3 ⊢ (𝑦 = 𝑡 → (𝜓 ↔ 𝜒)) | |
| 6 | 2, 3, 4, 5 | lemma-L6.03a 728 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ 𝜒) |
| 7 | 1, 6 | bitrns-P3.33c.RC 303 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psubcomp-P6 767 psubvar1-P6 802 |
| Copyright terms: Public domain | W3C validator |