PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.03a

Theorem lemma-L6.03a 728
Description: Similar to solvedsub-P6a 711 but using ax-L12 29.

'𝑦' cannot occur in '𝑡'.

Hypotheses
Ref Expression
lemma-L6.03a.1 𝑥𝜓
lemma-L6.03a.2 𝑦𝜒
lemma-L6.03a.3 (𝑥 = 𝑦 → (𝜑𝜓))
lemma-L6.03a.4 (𝑦 = 𝑡 → (𝜓𝜒))
Assertion
Ref Expression
lemma-L6.03a (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ 𝜒)
Distinct variable groups:   𝑡,𝑦   𝑥,𝑦

Proof of Theorem lemma-L6.03a
StepHypRef Expression
1 lemma-L6.03a.1 . . . . 5 𝑥𝜓
2 lemma-L6.03a.3 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2lemma-L6.02a 726 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
43subimr-P3.40b.RC 328 . . 3 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡𝜓))
54suballinf-P5 594 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑦(𝑦 = 𝑡𝜓))
6 lemma-L6.03a.2 . . 3 𝑦𝜒
7 lemma-L6.03a.4 . . 3 (𝑦 = 𝑡 → (𝜓𝜒))
86, 7lemma-L6.02a 726 . 2 (∀𝑦(𝑦 = 𝑡𝜓) ↔ 𝜒)
95, 8bitrns-P3.33c.RC 303 1 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  isubtopsub-P6  729
  Copyright terms: Public domain W3C validator