PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  solvedsub-P6a

Theorem solvedsub-P6a 711
Description: Solve for Double Substitution Formula ('𝑥' may occur in '𝑡').

Requires the existence of '𝜓₁(𝑥₁)' as a replacement for '𝜓(𝑥)' and '𝜒₁(𝑦₁)' as a replacement for '𝜒(𝑦)'. Also, '𝑦' cannot occur in '𝑡'.

The idea is the same as in solvesub-P6a 704, but we perform two substitutions in sequence. We first replace all free occurences of '𝑥' in '𝜑' with a fresh variable '𝑦' to get '𝜓'. We then replace all free occurences of '𝑦' in '𝜓' with '𝑡' (remembering to change any conflicting bound variables) in order to obtain '𝜒'.

The double substitution above is needed to allow '𝑥' to occur in the term '𝑡'. Again, it can be proved inductively that the formulas '𝜓' and '𝜒', obtained by the double substitution described above, satisfy the hypotheses of this statement. We can then "solve" for an equivalent direct formula.

Hypotheses
Ref Expression
solvedsub-P6a.1 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
solvedsub-P6a.2 𝑥𝜓
solvedsub-P6a.3 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
solvedsub-P6a.4 𝑦𝜒
solvedsub-P6a.5 (𝑥 = 𝑦 → (𝜑𝜓))
solvedsub-P6a.6 (𝑦 = 𝑡 → (𝜓𝜒))
Assertion
Ref Expression
solvedsub-P6a (𝜒 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝜓,𝑥₁   𝜓₁,𝑥   𝜒,𝑦₁   𝜒₁,𝑦   𝑡,𝑦   𝑥,𝑥₁,𝑦,𝑦₁

Proof of Theorem solvedsub-P6a
StepHypRef Expression
1 solvedsub-P6a.3 . . 3 (𝑦 = 𝑦₁ → (𝜒𝜒₁))
2 solvedsub-P6a.4 . . 3 𝑦𝜒
3 solvedsub-P6a.6 . . 3 (𝑦 = 𝑡 → (𝜓𝜒))
41, 2, 3solvesub-P6a 704 . 2 (𝜒 ↔ ∀𝑦(𝑦 = 𝑡𝜓))
5 solvedsub-P6a.1 . . . . 5 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
6 solvedsub-P6a.2 . . . . 5 𝑥𝜓
7 solvedsub-P6a.5 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
85, 6, 7solvesub-P6a 704 . . . 4 (𝜓 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
98subimr-P3.40b.RC 328 . . 3 ((𝑦 = 𝑡𝜓) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
109suballinf-P5 594 . 2 (∀𝑦(𝑦 = 𝑡𝜓) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
114, 10bitrns-P3.33c.RC 303 1 (𝜒 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  example-E6.02a  712  solvedsub-P6b  713
  Copyright terms: Public domain W3C validator