| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bitrns-P3.33c.RC | |||
| Description: Inference Form of bitrns-P3.33c 302. † |
| Ref | Expression |
|---|---|
| bitrns-P3.33c.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitrns-P3.33c.RC.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitrns-P3.33c.RC | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitrns-P3.33c.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | bitrns-P3.33c.RC.2 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 5 | 2, 4 | bitrns-P3.33c 302 | . 2 ⊢ (⊤ → (𝜑 ↔ 𝜒)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: oroverbi-P4.28-L3 468 imoverbi-P4.30-L2 478 lemma-L4.5 484 imasand-P4.33a 489 biasandor-P4.34a 491 allnegex-P5 597 exnegall-P5 598 allasex-P5 599 lemma-L5.01a 600 lemma-L5.03a 666 example-E5.04a 675 solvedsub-P6a 711 dfpsubv-P6 717 isubtopsubv-P6 727 lemma-L6.03a 728 isubtopsub-P6 729 qcexandr-P6 761 qcexandl-P6 762 lemma-L6.08a 773 dfpsubalt-P6 774 psubneg-P6-L1 787 psubneg-P6 788 psuband-P6 792 psubex2v-P6 797 psuball2-P6 798 psubex2-P6 799 psubsplitelof-P6 801 psubid-P7 940 dfnfreeint-P7 969 exnegall-P7 1046 allasex-P7 1048 |
| Copyright terms: Public domain | W3C validator |