PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bitrns-P3.33c.RC

Theorem bitrns-P3.33c.RC 303
Description: Inference Form of bitrns-P3.33c 302.
Hypotheses
Ref Expression
bitrns-P3.33c.RC.1 (𝜑𝜓)
bitrns-P3.33c.RC.2 (𝜓𝜒)
Assertion
Ref Expression
bitrns-P3.33c.RC (𝜑𝜒)

Proof of Theorem bitrns-P3.33c.RC
StepHypRef Expression
1 bitrns-P3.33c.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 bitrns-P3.33c.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
52, 4bitrns-P3.33c 302 . 2 (⊤ → (𝜑𝜒))
65ndtruee-P3.18 183 1 (𝜑𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverbi-P4.28-L3  468  imoverbi-P4.30-L2  478  lemma-L4.5  484  imasand-P4.33a  489  biasandor-P4.34a  491  allnegex-P5  597  exnegall-P5  598  allasex-P5  599  lemma-L5.01a  600  lemma-L5.03a  666  example-E5.04a  675  solvedsub-P6a  711  dfpsubv-P6  717  isubtopsubv-P6  727  lemma-L6.03a  728  isubtopsub-P6  729  qcexandr-P6  761  qcexandl-P6  762  lemma-L6.08a  773  dfpsubalt-P6  774  psubneg-P6-L1  787  psubneg-P6  788  psuband-P6  792  psubex2v-P6  797  psuball2-P6  798  psubex2-P6  799  psubsplitelof-P6  801  psubid-P7  940  dfnfreeint-P7  969  exnegall-P7  1046  allasex-P7  1048
  Copyright terms: Public domain W3C validator