PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qcexandl-P6

Theorem qcexandl-P6 762
Description: Quantifier Collection Law: Existential Quantifier Left on Conjunction (non-freeness condition).
Hypothesis
Ref Expression
qcexandl-P6.1 𝑥𝜓
Assertion
Ref Expression
qcexandl-P6 ((∃𝑥𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))

Proof of Theorem qcexandl-P6
StepHypRef Expression
1 andasim-P3.46a 356 . 2 ((∃𝑥𝜑𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓))
2 andasim-P3.46a 356 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
32subexinf-P5 608 . . . 4 (∃𝑥(𝜑𝜓) ↔ ∃𝑥 ¬ (𝜑 → ¬ 𝜓))
4 exnegall-P5 598 . . . 4 (∃𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓))
5 qcexandl-P6.1 . . . . . . . 8 𝑥𝜓
6 nfrneg-P6 688 . . . . . . . 8 (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓)
75, 6bimpr-P4.RC 534 . . . . . . 7 𝑥 ¬ 𝜓
87qceximl-P6 760 . . . . . 6 ((∃𝑥𝜑 → ¬ 𝜓) ↔ ∀𝑥(𝜑 → ¬ 𝜓))
98bisym-P3.33b.RC 299 . . . . 5 (∀𝑥(𝜑 → ¬ 𝜓) ↔ (∃𝑥𝜑 → ¬ 𝜓))
109subneg-P3.39.RC 324 . . . 4 (¬ ∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓))
113, 4, 10dbitrns-P4.16.RC 429 . . 3 (∃𝑥(𝜑𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓))
1211bisym-P3.33b.RC 299 . 2 (¬ (∃𝑥𝜑 → ¬ 𝜓) ↔ ∃𝑥(𝜑𝜓))
131, 12bitrns-P3.33c.RC 303 1 ((∃𝑥𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.07a-L2  771
  Copyright terms: Public domain W3C validator