| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qcexandl-P6 | |||
| Description: Quantifier Collection Law: Existential Quantifier Left on Conjunction (non-freeness condition). |
| Ref | Expression |
|---|---|
| qcexandl-P6.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| qcexandl-P6 | ⊢ ((∃𝑥𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andasim-P3.46a 356 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓)) | |
| 2 | andasim-P3.46a 356 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 3 | 2 | subexinf-P5 608 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥 ¬ (𝜑 → ¬ 𝜓)) |
| 4 | exnegall-P5 598 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓)) | |
| 5 | qcexandl-P6.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝜓 | |
| 6 | nfrneg-P6 688 | . . . . . . . 8 ⊢ (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓) | |
| 7 | 5, 6 | bimpr-P4.RC 534 | . . . . . . 7 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 8 | 7 | qceximl-P6 760 | . . . . . 6 ⊢ ((∃𝑥𝜑 → ¬ 𝜓) ↔ ∀𝑥(𝜑 → ¬ 𝜓)) |
| 9 | 8 | bisym-P3.33b.RC 299 | . . . . 5 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ (∃𝑥𝜑 → ¬ 𝜓)) |
| 10 | 9 | subneg-P3.39.RC 324 | . . . 4 ⊢ (¬ ∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓)) |
| 11 | 3, 4, 10 | dbitrns-P4.16.RC 429 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ¬ (∃𝑥𝜑 → ¬ 𝜓)) |
| 12 | 11 | bisym-P3.33b.RC 299 | . 2 ⊢ (¬ (∃𝑥𝜑 → ¬ 𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓)) |
| 13 | 1, 12 | bitrns-P3.33c.RC 303 | 1 ⊢ ((∃𝑥𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: lemma-L6.07a-L2 771 |
| Copyright terms: Public domain | W3C validator |