PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exnegall-P5

Theorem exnegall-P5 598
Description: "Exists a negative" is Equivalent to "Not for all".

Dual of allnegex-P5 597.

Assertion
Ref Expression
exnegall-P5 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)

Proof of Theorem exnegall-P5
StepHypRef Expression
1 df-exists-D5.1 596 . 2 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ ¬ 𝜑)
2 dnegeq-P4.10 418 . . . 4 (¬ ¬ 𝜑𝜑)
32suballinf-P5 594 . . 3 (∀𝑥 ¬ ¬ 𝜑 ↔ ∀𝑥𝜑)
43subneg-P3.39.RC 324 . 2 (¬ ∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
51, 4bitrns-P3.33c.RC 303 1 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  allasex-P5  599  qimeqex-P5-L1  610  gennallw-P6  678  qcexandr-P6  761  qcexandl-P6  762
  Copyright terms: Public domain W3C validator