| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exnegall-P5 | |||
| Description: "Exists a
negative" is Equivalent to "Not for all".
Dual of allnegex-P5 597. |
| Ref | Expression |
|---|---|
| exnegall-P5 | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exists-D5.1 596 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ ¬ 𝜑) | |
| 2 | dnegeq-P4.10 418 | . . . 4 ⊢ (¬ ¬ 𝜑 ↔ 𝜑) | |
| 3 | 2 | suballinf-P5 594 | . . 3 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ∀𝑥𝜑) |
| 4 | 3 | subneg-P3.39.RC 324 | . 2 ⊢ (¬ ∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| 5 | 1, 4 | bitrns-P3.33c.RC 303 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: allasex-P5 599 qimeqex-P5-L1 610 gennallw-P6 678 qcexandr-P6 761 qcexandl-P6 762 |
| Copyright terms: Public domain | W3C validator |