PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qcexandr-P6

Theorem qcexandr-P6 761
Description: Quantifier Collection Law: Existential Quantifier Right on Conjunction (non-freeness condition).
Hypothesis
Ref Expression
qcexandr-P6.1 𝑥𝜑
Assertion
Ref Expression
qcexandr-P6 ((𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))

Proof of Theorem qcexandr-P6
StepHypRef Expression
1 andasim-P3.46a 356 . 2 ((𝜑 ∧ ∃𝑥𝜓) ↔ ¬ (𝜑 → ¬ ∃𝑥𝜓))
2 andasim-P3.46a 356 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
32subexinf-P5 608 . . . 4 (∃𝑥(𝜑𝜓) ↔ ∃𝑥 ¬ (𝜑 → ¬ 𝜓))
4 exnegall-P5 598 . . . 4 (∃𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓))
5 qcexandr-P6.1 . . . . . . . 8 𝑥𝜑
65qcallimr-P6 757 . . . . . . 7 ((𝜑 → ∀𝑥 ¬ 𝜓) ↔ ∀𝑥(𝜑 → ¬ 𝜓))
76bisym-P3.33b.RC 299 . . . . . 6 (∀𝑥(𝜑 → ¬ 𝜓) ↔ (𝜑 → ∀𝑥 ¬ 𝜓))
8 allnegex-P5 597 . . . . . . 7 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
98subimr-P3.40b.RC 328 . . . . . 6 ((𝜑 → ∀𝑥 ¬ 𝜓) ↔ (𝜑 → ¬ ∃𝑥𝜓))
107, 9bitrns-P3.33c.RC 303 . . . . 5 (∀𝑥(𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ ∃𝑥𝜓))
1110subneg-P3.39.RC 324 . . . 4 (¬ ∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ ∃𝑥𝜓))
123, 4, 11dbitrns-P4.16.RC 429 . . 3 (∃𝑥(𝜑𝜓) ↔ ¬ (𝜑 → ¬ ∃𝑥𝜓))
1312bisym-P3.33b.RC 299 . 2 (¬ (𝜑 → ¬ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))
141, 13bitrns-P3.33c.RC 303 1 ((𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator