PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andasim-P3.46a

Theorem andasim-P3.46a 356
Description: '' in Terms of ''.

This is the re-derived Chapter 2 definition. Only andasimint-P3.46b 357 is deducible with intuitionist logic.

Assertion
Ref Expression
andasim-P3.46a ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Proof of Theorem andasim-P3.46a
StepHypRef Expression
1 andasim-P3.46-L1 354 . 2 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
2 andasim-P3.46-L2 355 . 2 (¬ (𝜑 → ¬ 𝜓) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  nfrand-P6  690  qcexandr-P6  761  qcexandl-P6  762  psubneg-P6-L1  787  psuband-P6  792  nfrandd-P6  816
  Copyright terms: Public domain W3C validator