| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubneg-P6-L1 | |||
| Description: Lemma for psubneg-P6 788. |
| Ref | Expression |
|---|---|
| psubneg-P6-L1 | ⊢ (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allasex-P5 599 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑)) | |
| 2 | andasim-P3.46a 356 | . . . . 5 ⊢ ((𝑥 = 𝑡 ∧ 𝜑) ↔ ¬ (𝑥 = 𝑡 → ¬ 𝜑)) | |
| 3 | 2 | bisym-P3.33b.RC 299 | . . . 4 ⊢ (¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ (𝑥 = 𝑡 ∧ 𝜑)) |
| 4 | 3 | subexinf-P5 608 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| 5 | 4 | subneg-P3.39.RC 324 | . 2 ⊢ (¬ ∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| 6 | 1, 5 | bitrns-P3.33c.RC 303 | 1 ⊢ (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡 ∧ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: psubneg-P6 788 |
| Copyright terms: Public domain | W3C validator |