PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubneg-P6-L1

Theorem psubneg-P6-L1 787
Description: Lemma for psubneg-P6 788.
Assertion
Ref Expression
psubneg-P6-L1 (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡𝜑))

Proof of Theorem psubneg-P6-L1
StepHypRef Expression
1 allasex-P5 599 . 2 (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑))
2 andasim-P3.46a 356 . . . . 5 ((𝑥 = 𝑡𝜑) ↔ ¬ (𝑥 = 𝑡 → ¬ 𝜑))
32bisym-P3.33b.RC 299 . . . 4 (¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ (𝑥 = 𝑡𝜑))
43subexinf-P5 608 . . 3 (∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ ∃𝑥(𝑥 = 𝑡𝜑))
54subneg-P3.39.RC 324 . 2 (¬ ∃𝑥 ¬ (𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡𝜑))
61, 5bitrns-P3.33c.RC 303 1 (∀𝑥(𝑥 = 𝑡 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  psubneg-P6  788
  Copyright terms: Public domain W3C validator