PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subneg-P3.39.RC

Theorem subneg-P3.39.RC 324
Description: Inference Form of subneg-P3.39 323.
Hypothesis
Ref Expression
subneg-P3.39.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subneg-P3.39.RC 𝜑 ↔ ¬ 𝜓)

Proof of Theorem subneg-P3.39.RC
StepHypRef Expression
1 subneg-P3.39.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subneg-P3.39 323 . 2 (⊤ → (¬ 𝜑 ↔ ¬ 𝜓))
43ndtruee-P3.18 183 1 𝜑 ↔ ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  allnegex-P5  597  exnegall-P5  598  allasex-P5  599  cbvexv-P5  660  nfrleq-P6  687  cbvex-P6  752  qcexandr-P6  761  qcexandl-P6  762  psubneg-P6-L1  787  psubneg-P6  788  psuband-P6  792  psubex2v-P6  797  dfexists-P7  959  dfexistsint-P7  960  exnegall-P7  1046  allasex-P7  1048
  Copyright terms: Public domain W3C validator