| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subneg-P3.39.RC | |||
| Description: Inference Form of subneg-P3.39 323. † |
| Ref | Expression |
|---|---|
| subneg-P3.39.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subneg-P3.39.RC | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subneg-P3.39.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | subneg-P3.39 323 | . 2 ⊢ (⊤ → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: allnegex-P5 597 exnegall-P5 598 allasex-P5 599 cbvexv-P5 660 nfrleq-P6 687 cbvex-P6 752 qcexandr-P6 761 qcexandl-P6 762 psubneg-P6-L1 787 psubneg-P6 788 psuband-P6 792 psubex2v-P6 797 dfexists-P7 959 dfexistsint-P7 960 exnegall-P7 1046 allasex-P7 1048 |
| Copyright terms: Public domain | W3C validator |