PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfexists-P7

Theorem dfexists-P7 959
Description: df-exists-D5.1 596 Derived from Natural Deduction Rules.

Note that this definition is not deducible with intuitionist logic.

Assertion
Ref Expression
dfexists-P7 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)

Proof of Theorem dfexists-P7
StepHypRef Expression
1 allnegex-P7 958 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
21subneg-P3.39.RC 324 . . 3 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ¬ ∃𝑥𝜑)
32bisym-P3.33b.RC 299 . 2 (¬ ¬ ∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
4 dnegeq-P4.10 418 . 2 (¬ ¬ ∃𝑥𝜑 ↔ ∃𝑥𝜑)
53, 4subbil2-P4.RC 547 1 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  exnegall-P7  1046
  Copyright terms: Public domain W3C validator