| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subbil2-P4.RC | |||
| Description: Inference Form of subbil2-P4 546. † |
| Ref | Expression |
|---|---|
| subbil2-P4.RC.1 | ⊢ (𝜑 ↔ 𝜒) |
| subbil2-P4.RC.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subbil2-P4.RC | ⊢ (𝜓 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subbil2-P4.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜒)) |
| 3 | subbil2-P4.RC.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | subbil2-P4 546 | . 2 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝜓 ↔ 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: qcallimrv-P5 671 qceximrv-P5 672 qcallimlv-P5 673 qceximlv-P5 674 qcallimr-P6 757 qceximr-P6 758 qcalliml-P6 759 qceximl-P6 760 dfexists-P7 959 qcallimr-P8 1122 qceximr-P8 1123 qcalliml-P8 1124 qceximl-P8 1125 |
| Copyright terms: Public domain | W3C validator |