PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbil2-P4.RC

Theorem subbil2-P4.RC 547
Description: Inference Form of subbil2-P4 546.
Hypotheses
Ref Expression
subbil2-P4.RC.1 (𝜑𝜒)
subbil2-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
subbil2-P4.RC (𝜓𝜒)

Proof of Theorem subbil2-P4.RC
StepHypRef Expression
1 subbil2-P4.RC.1 . . . 4 (𝜑𝜒)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜒))
3 subbil2-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4subbil2-P4 546 . 2 (⊤ → (𝜓𝜒))
65ndtruee-P3.18 183 1 (𝜓𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  qcallimrv-P5  671  qceximrv-P5  672  qcallimlv-P5  673  qceximlv-P5  674  qcallimr-P6  757  qceximr-P6  758  qcalliml-P6  759  qceximl-P6  760  dfexists-P7  959  qcallimr-P8  1122  qceximr-P8  1123  qcalliml-P8  1124  qceximl-P8  1125
  Copyright terms: Public domain W3C validator