PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qcallimr-P6

Theorem qcallimr-P6 757
Description: Quantifier Collection Law: Universal Quantifier Right on Implication (non-freeness condition).
Hypothesis
Ref Expression
qcallimr-P6.1 𝑥𝜑
Assertion
Ref Expression
qcallimr-P6 ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem qcallimr-P6
StepHypRef Expression
1 qcallimr-P6.1 . . . 4 𝑥𝜑
21qimeqalla-P6 699 . . 3 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
32bisym-P3.33b.RC 299 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
41qremex-P6 723 . . 3 (∃𝑥𝜑𝜑)
54subiml-P3.40a.RC 326 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))
63, 5subbil2-P4.RC 547 1 ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  qcexandr-P6  761
  Copyright terms: Public domain W3C validator