PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qcalliml-P6

Theorem qcalliml-P6 759
Description: Quantifier Collection Law: Universal Quantifier Left on Implication (non-freeness condition).
Hypothesis
Ref Expression
qcalliml-P6.1 𝑥𝜓
Assertion
Ref Expression
qcalliml-P6 ((∀𝑥𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))

Proof of Theorem qcalliml-P6
StepHypRef Expression
1 qimeqex-P5 612 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
21bisym-P3.33b.RC 299 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))
3 qcalliml-P6.1 . . . 4 𝑥𝜓
43qremex-P6 723 . . 3 (∃𝑥𝜓𝜓)
54subimr-P3.40b.RC 328 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
62, 5subbil2-P4.RC 547 1 ((∀𝑥𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator