| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqex-P5 | |||
| Description: Quantified Implication Equivalence Law ( E ↔ ( U → E ) ). |
| Ref | Expression |
|---|---|
| qimeqex-P5 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qimeqex-P5-L2 611 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | qimeqex-P5-L1 610 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qceximrv-P5 672 qcallimlv-P5 673 qceximr-P6 758 qcalliml-P6 759 nfrimd-P6 815 |
| Copyright terms: Public domain | W3C validator |