PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqex-P5

Theorem qimeqex-P5 612
Description: Quantified Implication Equivalence Law ( E ( U E ) ).
Assertion
Ref Expression
qimeqex-P5 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem qimeqex-P5
StepHypRef Expression
1 qimeqex-P5-L2 611 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
2 qimeqex-P5-L1 610 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
31, 2rcp-NDBII0 239 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qceximrv-P5  672  qcallimlv-P5  673  qceximr-P6  758  qcalliml-P6  759  nfrimd-P6  815
  Copyright terms: Public domain W3C validator