PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqex-P5-L1

Theorem qimeqex-P5-L1 610
Description: Lemma for qimeqex-P5 612.
Assertion
Ref Expression
qimeqex-P5-L1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem qimeqex-P5-L1
StepHypRef Expression
1 impoe-P4.4a.CL 379 . . . . 5 𝜑 → (𝜑𝜓))
21alloverimex-P5.RC.GEN 603 . . . 4 (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑𝜓))
3 exnegall-P5 598 . . . 4 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
42, 3subiml2-P4.RC 541 . . 3 (¬ ∀𝑥𝜑 → ∃𝑥(𝜑𝜓))
5 axL1-P3.21.CL 253 . . . 4 (𝜓 → (𝜑𝜓))
65alloverimex-P5.RC.GEN 603 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
74, 6joinimandinc3-P4.RC 579 . 2 ((¬ ∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
8 imasor-P4.32a 487 . . 3 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (¬ ∀𝑥𝜑 ∨ ∃𝑥𝜓))
98bisym-P3.33b.RC 299 . 2 ((¬ ∀𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
107, 9subiml2-P4.RC 541 1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqex-P5  612
  Copyright terms: Public domain W3C validator