PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandinc3-P4.RC

Theorem joinimandinc3-P4.RC 579
Description: Inference Form of joinimandinc3-P4 578.
Hypotheses
Ref Expression
joinimandinc3-P4.RC.1 (𝜑𝜓)
joinimandinc3-P4.RC.2 (𝜒𝜓)
Assertion
Ref Expression
joinimandinc3-P4.RC ((𝜑𝜒) → 𝜓)

Proof of Theorem joinimandinc3-P4.RC
StepHypRef Expression
1 joinimandinc3-P4.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 joinimandinc3-P4.RC.2 . . . 4 (𝜒𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜓))
52, 4joinimandinc3-P4 578 . 2 (⊤ → ((𝜑𝜒) → 𝜓))
65ndtruee-P3.18 183 1 ((𝜑𝜒) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  qimeqallhalf-P5  609  qimeqex-P5-L1  610  psubim-P6-L2  790
  Copyright terms: Public domain W3C validator