PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandinc3-P4

Theorem joinimandinc3-P4 578
Description: Alternate form of joinimandinc-P4.8a 397.
Hypotheses
Ref Expression
joinimandinc3-P4.1 (𝛾 → (𝜑𝜓))
joinimandinc3-P4.2 (𝛾 → (𝜒𝜓))
Assertion
Ref Expression
joinimandinc3-P4 (𝛾 → ((𝜑𝜒) → 𝜓))

Proof of Theorem joinimandinc3-P4
StepHypRef Expression
1 joinimandinc3-P4.1 . . . 4 (𝛾 → (𝜑𝜓))
2 joinimandinc3-P4.2 . . . 4 (𝛾 → (𝜒𝜓))
31, 2ndandi-P3.7 172 . . 3 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜓)))
43joinimandinc-P4.8a 397 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜓)))
5 idempotor-P4.25b 451 . . 3 ((𝜓𝜓) ↔ 𝜓)
65rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜓𝜓) ↔ 𝜓))
74, 6subimr2-P4 542 1 (𝛾 → ((𝜑𝜒) → 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  joinimandinc3-P4.RC  579
  Copyright terms: Public domain W3C validator