PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr2-P4

Theorem subimr2-P4 542
Description: Alternate Form of subimr-P3.40b 327.
Hypotheses
Ref Expression
subimr2-P4.1 (𝛾 → (𝜒𝜑))
subimr2-P4.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subimr2-P4 (𝛾 → (𝜒𝜓))

Proof of Theorem subimr2-P4
StepHypRef Expression
1 subimr2-P4.1 . 2 (𝛾 → (𝜒𝜑))
2 subimr2-P4.2 . . . 4 (𝛾 → (𝜑𝜓))
32subimr-P3.40b 327 . . 3 (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
43ndbief-P3.14 179 . 2 (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))
51, 4ndime-P3.6 171 1 (𝛾 → (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subimr2-P4.RC  543  joinimandinc3-P4  578  joinimor2-P4  584
  Copyright terms: Public domain W3C validator