PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr-P3.40b

Theorem subimr-P3.40b 327
Description: Right Substitution Theorem for ''.
Hypothesis
Ref Expression
subimr-P3.40b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subimr-P3.40b (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem subimr-P3.40b
StepHypRef Expression
1 subimr-P3.40b.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
32imsubr-P3.28b 269 . 2 (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))
41ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
54imsubr-P3.28b 269 . 2 (𝛾 → ((𝜒𝜓) → (𝜒𝜑)))
63, 5ndbii-P3.13 178 1 (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subimr-P3.40b.RC  328  subimr2-P4  542
  Copyright terms: Public domain W3C validator