| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndbii-P3.13 | |||
| Description: Natural Deduction: '↔' Introduction Rule.
If we have previously deduced both directions of a biconditional, then we can deduce the full biconditional. |
| Ref | Expression |
|---|---|
| ndbii-P3.13.1 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| ndbii-P3.13.2 | ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| ndbii-P3.13 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndbii-P3.13.1 | . 2 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 2 | ndbii-P3.13.2 | . 2 ⊢ (𝛾 → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | bicmb-P2.5c.AC.2SH 121 | 1 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: rcp-NDBII0 239 ndbii-P3.13.CL 248 bisym-P3.33b 298 bitrns-P3.33c 302 subneg-P3.39 323 subiml-P3.40a 325 subimr-P3.40b 327 subimd-P3.40c 329 subbil-P3.41a 332 subandl-P3.42a 339 suborl-P3.43a 346 oroverbiint-P4.28d 471 biasandorint-P4.34b 492 suballv-P5 623 subexv-P5 624 subeql-P5 632 subeqr-P5 635 subelofl-P5 638 subelofr-P5 640 lemma-L6.01a 724 suball-P6 753 subex-P6 754 spliteq-P6-L1 775 splitelof-P6-L1 777 qremexd-P6 823 gennfrcl-P7 963 suball-P7 973 subex-P7 1042 |
| Copyright terms: Public domain | W3C validator |