| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subimd-P3.40c | |||
| Description: Dual Substitution Law for '→'. † |
| Ref | Expression |
|---|---|
| subimd-P3.40c.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| subimd-P3.40c.2 | ⊢ (𝛾 → (𝜒 ↔ 𝜗)) |
| Ref | Expression |
|---|---|
| subimd-P3.40c | ⊢ (𝛾 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subimd-P3.40c.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 3 | subimd-P3.40c.2 | . . . 4 ⊢ (𝛾 → (𝜒 ↔ 𝜗)) | |
| 4 | 3 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜒 → 𝜗)) |
| 5 | 2, 4 | imsubd-P3.28c 271 | . 2 ⊢ (𝛾 → ((𝜑 → 𝜒) → (𝜓 → 𝜗))) |
| 6 | 1 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 7 | 3 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜗 → 𝜒)) |
| 8 | 6, 7 | imsubd-P3.28c 271 | . 2 ⊢ (𝛾 → ((𝜓 → 𝜗) → (𝜑 → 𝜒))) |
| 9 | 5, 8 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜗))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: subimd-P3.40c.RC 330 subimd2-P4 544 example-E5.03a 665 example-E5.04a 675 example-E6.01a 706 psubjust-P6 715 subnfr-P6 755 |
| Copyright terms: Public domain | W3C validator |