PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimd-P3.40c

Theorem subimd-P3.40c 329
Description: Dual Substitution Law for ''.
Hypotheses
Ref Expression
subimd-P3.40c.1 (𝛾 → (𝜑𝜓))
subimd-P3.40c.2 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
subimd-P3.40c (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))

Proof of Theorem subimd-P3.40c
StepHypRef Expression
1 subimd-P3.40c.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
3 subimd-P3.40c.2 . . . 4 (𝛾 → (𝜒𝜗))
43ndbief-P3.14 179 . . 3 (𝛾 → (𝜒𝜗))
52, 4imsubd-P3.28c 271 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
61ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
73ndbier-P3.15 180 . . 3 (𝛾 → (𝜗𝜒))
86, 7imsubd-P3.28c 271 . 2 (𝛾 → ((𝜓𝜗) → (𝜑𝜒)))
95, 8ndbii-P3.13 178 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subimd-P3.40c.RC  330  subimd2-P4  544  example-E5.03a  665  example-E5.04a  675  example-E6.01a  706  psubjust-P6  715  subnfr-P6  755
  Copyright terms: Public domain W3C validator