PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E6.01a

Theorem example-E6.01a 706
Description: Eliminating Hypothesis to solvesub-P6a 704.

In this example we replace '𝑏' in 𝜑 with '𝑥'. Because '𝑥' is a bound variable in '𝜑', we use cbvallv-P5 659 to change the bound variable '𝑥' to '𝑦' so as not to conflict with the substituted '𝑥'. The WFF metavariables '𝜑' and '𝜓', defined as hypotheses, exist only to make this example easier to follow. It is easy to locate the important steps, which are...

'𝑏𝜓',

and '(𝑏 = 𝑥 → (𝜑𝜓))'.

Hypotheses
Ref Expression
example-E6.01a.1 (𝑏 = 𝑏₁ → (𝜓𝜓₁))
example-E6.01a.2 (𝜑 ↔ ∀𝑥(𝑥𝑏𝑥𝑎))
example-E6.01a.3 (𝜓 ↔ ∀𝑦(𝑦𝑥𝑦𝑎))
Assertion
Ref Expression
example-E6.01a (𝜓 ↔ ∀𝑏(𝑏 = 𝑥𝜑))
Distinct variable groups:   𝜓,𝑏₁   𝜓₁,𝑏   𝑎,𝑏,𝑏₁,𝑥,𝑦

Proof of Theorem example-E6.01a
StepHypRef Expression
1 example-E6.01a.1 . 2 (𝑏 = 𝑏₁ → (𝜓𝜓₁))
2 nfrv-P6 686 . . 3 𝑏𝑦(𝑦𝑥𝑦𝑎)
3 example-E6.01a.3 . . . . 5 (𝜓 ↔ ∀𝑦(𝑦𝑥𝑦𝑎))
43bisym-P3.33b.RC 299 . . . 4 (∀𝑦(𝑦𝑥𝑦𝑎) ↔ 𝜓)
54nfrleq-P6 687 . . 3 (Ⅎ𝑏𝑦(𝑦𝑥𝑦𝑎) ↔ Ⅎ𝑏𝜓)
62, 5bimpf-P4.RC 532 . 2 𝑏𝜓
7 subelofl-P5.CL 639 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑏𝑦𝑏))
8 subelofl-P5.CL 639 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑎𝑦𝑎))
97, 8subimd-P3.40c 329 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑏𝑥𝑎) ↔ (𝑦𝑏𝑦𝑎)))
109cbvallv-P5 659 . . . . 5 (∀𝑥(𝑥𝑏𝑥𝑎) ↔ ∀𝑦(𝑦𝑏𝑦𝑎))
1110rcp-NDIMP0addall 207 . . . 4 (𝑏 = 𝑥 → (∀𝑥(𝑥𝑏𝑥𝑎) ↔ ∀𝑦(𝑦𝑏𝑦𝑎)))
12 subelofr-P5.CL 641 . . . . . 6 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
1312subiml-P3.40a 325 . . . . 5 (𝑏 = 𝑥 → ((𝑦𝑏𝑦𝑎) ↔ (𝑦𝑥𝑦𝑎)))
1413suballv-P5 623 . . . 4 (𝑏 = 𝑥 → (∀𝑦(𝑦𝑏𝑦𝑎) ↔ ∀𝑦(𝑦𝑥𝑦𝑎)))
1511, 14bitrns-P3.33c 302 . . 3 (𝑏 = 𝑥 → (∀𝑥(𝑥𝑏𝑥𝑎) ↔ ∀𝑦(𝑦𝑥𝑦𝑎)))
16 example-E6.01a.2 . . . . 5 (𝜑 ↔ ∀𝑥(𝑥𝑏𝑥𝑎))
1716bisym-P3.33b.RC 299 . . . 4 (∀𝑥(𝑥𝑏𝑥𝑎) ↔ 𝜑)
1817, 4subbid-P3.41c.RC 337 . . 3 ((∀𝑥(𝑥𝑏𝑥𝑎) ↔ ∀𝑦(𝑦𝑥𝑦𝑎)) ↔ (𝜑𝜓))
1915, 18subimr2-P4.RC 543 . 2 (𝑏 = 𝑥 → (𝜑𝜓))
201, 6, 19solvesub-P6a 704 1 (𝜓 ↔ ∀𝑏(𝑏 = 𝑥𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator