PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  solvesub-P6b

Theorem solvesub-P6b 707
Description: solvesub-P6a 704 with result substituted back into hypothesis.

Requires the existence of '𝜓₁(𝑥₁)' as a replacement for '𝜓(𝑥)'. Also, '𝑥' cannot occur in '𝑡'.

Hypotheses
Ref Expression
solvesub-P6b.1 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
solvesub-P6b.2 𝑥𝜓
solvesub-P6b.3 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
solvesub-P6b (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
Distinct variable groups:   𝜓,𝑥₁   𝜓₁,𝑥   𝑡,𝑥   𝑥,𝑥₁

Proof of Theorem solvesub-P6b
StepHypRef Expression
1 solvesub-P6b.3 . 2 (𝑥 = 𝑡 → (𝜑𝜓))
2 solvesub-P6b.1 . . . 4 (𝑥 = 𝑥₁ → (𝜓𝜓₁))
3 solvesub-P6b.2 . . . 4 𝑥𝜓
42, 3, 1solvesub-P6a 704 . . 3 (𝜓 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
54subbir-P3.41b.RC 335 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
61, 5subimr2-P4.RC 543 1 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator