PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbir-P3.41b.RC

Theorem subbir-P3.41b.RC 335
Description: Inference Form of subbir-P3.41b 334.
Hypothesis
Ref Expression
subbir-P3.41b.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subbir-P3.41b.RC ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem subbir-P3.41b.RC
StepHypRef Expression
1 subbir-P3.41b.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subbir-P3.41b 334 . 2 (⊤ → ((𝜒𝜑) ↔ (𝜒𝜓)))
43ndtruee-P3.18 183 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  solvesub-P6b  707  solvedsub-P6b  713  psubtoisubv-P6  725  psubtoisub-P6  765
  Copyright terms: Public domain W3C validator