PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubtoisubv-P6

Theorem psubtoisubv-P6 725
Description: Conversion From Explicit to Implicit Substitution (for when '𝑡' does not contain '𝑥').

'𝑥' cannot occur in '𝑡'.

The full form is proved later as psubtoisub-P6 765.

Assertion
Ref Expression
psubtoisubv-P6 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem psubtoisubv-P6
StepHypRef Expression
1 lemma-L6.01a 724 . 2 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
2 dfpsubv-P6 717 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
32bisym-P3.33b.RC 299 . . 3 (∀𝑥(𝑥 = 𝑡𝜑) ↔ [𝑡 / 𝑥]𝜑)
43subbir-P3.41b.RC 335 . 2 ((𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)) ↔ (𝜑 ↔ [𝑡 / 𝑥]𝜑))
51, 4subimr2-P4.RC 543 1 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndpsub2-P7.14  839
  Copyright terms: Public domain W3C validator