| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.02a | |||
| Description: Simular to solvesub-P6a 704, but using ax-L12 29.
'𝑥' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L6.02a.1 | ⊢ Ⅎ𝑥𝜓 |
| lemma-L6.02a.2 | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| lemma-L6.02a | ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L6.02a.2 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) | |
| 2 | imoverbi-P4.30b 479 | . . . 4 ⊢ ((𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) ↔ ((𝑥 = 𝑡 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜓))) | |
| 3 | 1, 2 | bimpf-P4.RC 532 | . . 3 ⊢ ((𝑥 = 𝑡 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜓)) |
| 4 | 3 | suballinf-P5 594 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜓)) |
| 5 | lemma-L6.02a.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | qimeqallb-P6 701 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑡 → ∀𝑥𝜓)) |
| 7 | axL6ex-P5 625 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑡 | |
| 8 | 7 | thmeqtrue-P4.21a 442 | . . 3 ⊢ (∃𝑥 𝑥 = 𝑡 ↔ ⊤) |
| 9 | 5 | qremall-P6 722 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
| 10 | 8, 9 | subimd-P3.40c.RC 330 | . 2 ⊢ ((∃𝑥 𝑥 = 𝑡 → ∀𝑥𝜓) ↔ (⊤ → 𝜓)) |
| 11 | trueie-P4.22a 444 | . 2 ⊢ ((⊤ → 𝜓) ↔ 𝜓) | |
| 12 | 4, 6, 10, 11 | tbitrns-P4.17.RC 431 | 1 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: isubtopsubv-P6 727 lemma-L6.03a 728 |
| Copyright terms: Public domain | W3C validator |