PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.02a

Theorem lemma-L6.02a 726
Description: Simular to solvesub-P6a 704, but using ax-L12 29.

'𝑥' cannot occur in '𝑡'.

Hypotheses
Ref Expression
lemma-L6.02a.1 𝑥𝜓
lemma-L6.02a.2 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
lemma-L6.02a (∀𝑥(𝑥 = 𝑡𝜑) ↔ 𝜓)
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.02a
StepHypRef Expression
1 lemma-L6.02a.2 . . . 4 (𝑥 = 𝑡 → (𝜑𝜓))
2 imoverbi-P4.30b 479 . . . 4 ((𝑥 = 𝑡 → (𝜑𝜓)) ↔ ((𝑥 = 𝑡𝜑) ↔ (𝑥 = 𝑡𝜓)))
31, 2bimpf-P4.RC 532 . . 3 ((𝑥 = 𝑡𝜑) ↔ (𝑥 = 𝑡𝜓))
43suballinf-P5 594 . 2 (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑥(𝑥 = 𝑡𝜓))
5 lemma-L6.02a.1 . . 3 𝑥𝜓
65qimeqallb-P6 701 . 2 (∀𝑥(𝑥 = 𝑡𝜓) ↔ (∃𝑥 𝑥 = 𝑡 → ∀𝑥𝜓))
7 axL6ex-P5 625 . . . 4 𝑥 𝑥 = 𝑡
87thmeqtrue-P4.21a 442 . . 3 (∃𝑥 𝑥 = 𝑡 ↔ ⊤)
95qremall-P6 722 . . 3 (∀𝑥𝜓𝜓)
108, 9subimd-P3.40c.RC 330 . 2 ((∃𝑥 𝑥 = 𝑡 → ∀𝑥𝜓) ↔ (⊤ → 𝜓))
11 trueie-P4.22a 444 . 2 ((⊤ → 𝜓) ↔ 𝜓)
124, 6, 10, 11tbitrns-P4.17.RC 431 1 (∀𝑥(𝑥 = 𝑡𝜑) ↔ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-true 153  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  isubtopsubv-P6  727  lemma-L6.03a  728
  Copyright terms: Public domain W3C validator