PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimd-P3.40c.RC

Theorem subimd-P3.40c.RC 330
Description: Inference Form of subimd-P3.40c 329.
Hypotheses
Ref Expression
subimd-P3.40c.RC.1 (𝜑𝜓)
subimd-P3.40c.RC.2 (𝜒𝜗)
Assertion
Ref Expression
subimd-P3.40c.RC ((𝜑𝜒) ↔ (𝜓𝜗))

Proof of Theorem subimd-P3.40c.RC
StepHypRef Expression
1 subimd-P3.40c.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 subimd-P3.40c.RC.2 . . . 4 (𝜒𝜗)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
52, 4subimd-P3.40c 329 . 2 (⊤ → ((𝜑𝜒) ↔ (𝜓𝜗)))
65ndtruee-P3.18 183 1 ((𝜑𝜒) ↔ (𝜓𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subeqr-P5-L1  634  solvesub-P6a  704  lemma-L6.02a  726  genex-P6  731  psubnfr-P6  784  psubim-P6-L1  789
  Copyright terms: Public domain W3C validator