| Step | Hyp | Ref
| Expression |
| 1 | | axL2-P3.22.CL 256 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 →
(𝜑 → 𝜓))
→ ((𝑥 = 𝑦 → 𝜑) →
(𝑥 = 𝑦
→ 𝜓))) |
| 2 | 1 | dalloverim-P5.RC.GEN 593 |
. . . . . 6
⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 →
𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) →
∀𝑥(𝑥
= 𝑦 → 𝜓))) |
| 3 | 2 | imsubr-P3.28b.RC 270 |
. . . . 5
⊢ ((𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → (𝜑
→ 𝜓))) → (𝑦 = 𝑡 →
(∀𝑥(𝑥 = 𝑦 →
𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) |
| 4 | 3 | axL2-P3.22 254 |
. . . 4
⊢ ((𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → (𝜑
→ 𝜓))) → ((𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → 𝜑))
→ (𝑦 = 𝑡
→ ∀𝑥(𝑥 = 𝑦 →
𝜓)))) |
| 5 | 4 | dalloverim-P5.RC.GEN 593 |
. . 3
⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑 →
𝜓))) → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) →
∀𝑦(𝑦
= 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) |
| 6 | | df-psub-D6.2 716 |
. . . 4
⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) ↔
∀𝑦(𝑦
= 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑 →
𝜓)))) |
| 7 | 6 | bisym-P3.33b.RC 299 |
. . 3
⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑 →
𝜓))) ↔ [𝑡 /
𝑥](𝜑 →
𝜓)) |
| 8 | 5, 7 | subiml2-P4.RC 541 |
. 2
⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) →
(∀𝑦(𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → 𝜑))
→ ∀𝑦(𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → 𝜓)))) |
| 9 | | df-psub-D6.2 716 |
. . . 4
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 10 | | df-psub-D6.2 716 |
. . . 4
⊢ ([𝑡 / 𝑥]𝜓 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 11 | 9, 10 | subimd-P3.40c.RC 330 |
. . 3
⊢ (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) ↔
(∀𝑦(𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → 𝜑))
→ ∀𝑦(𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → 𝜓)))) |
| 12 | 11 | bisym-P3.33b.RC 299 |
. 2
⊢ ((∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) →
∀𝑦(𝑦
= 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) ↔
([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| 13 | 8, 12 | subimr2-P4.RC 543 |
1
⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) →
([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |