PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubim-P6-L1

Theorem psubim-P6-L1 789
Description: Lemma for psubim-P6 791.
Assertion
Ref Expression
psubim-P6-L1 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem psubim-P6-L1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axL2-P3.22.CL 256 . . . . . . 7 ((𝑥 = 𝑦 → (𝜑𝜓)) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
21dalloverim-P5.RC.GEN 593 . . . . . 6 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓)))
32imsubr-P3.28b.RC 270 . . . . 5 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓))))
43axL2-P3.22 254 . . . 4 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓))))
54dalloverim-P5.RC.GEN 593 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓))))
6 df-psub-D6.2 716 . . . 4 ([𝑡 / 𝑥](𝜑𝜓) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))))
76bisym-P3.33b.RC 299 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) ↔ [𝑡 / 𝑥](𝜑𝜓))
85, 7subiml2-P4.RC 541 . 2 ([𝑡 / 𝑥](𝜑𝜓) → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓))))
9 df-psub-D6.2 716 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
10 df-psub-D6.2 716 . . . 4 ([𝑡 / 𝑥]𝜓 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓)))
119, 10subimd-P3.40c.RC 330 . . 3 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) ↔ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓))))
1211bisym-P3.33b.RC 299 . 2 ((∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓))) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
138, 12subimr2-P4.RC 543 1 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161  df-psub-D6.2 716
This theorem is referenced by:  psubim-P6-L2  790  psubim-P6  791
  Copyright terms: Public domain W3C validator