| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imsubr-P3.28b.RC | |||
| Description: Inference Form of imsubr-P3.28b 269. † |
| Ref | Expression |
|---|---|
| imsubr-P3.28b.RC.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imsubr-P3.28b.RC | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsubr-P3.28b.RC.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 3 | 2 | imsubr-P3.28b 269 | . 2 ⊢ (⊤ → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: psubim-P6-L1 789 ndnfrneg-P7.2 827 |
| Copyright terms: Public domain | W3C validator |