PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubr-P3.28b

Theorem imsubr-P3.28b 269
Description: Implication Substitution (right).
Hypothesis
Ref Expression
imsubr-P3.28b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
imsubr-P3.28b (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem imsubr-P3.28b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜒𝜑)) → (𝜒𝜑))
2 imsubr-P3.28b.1 . . . 4 (𝛾 → (𝜑𝜓))
32rcp-NDIMP1add1 208 . . 3 ((𝛾 ∧ (𝜒𝜑)) → (𝜑𝜓))
41, 3syl-P3.24 259 . 2 ((𝛾 ∧ (𝜒𝜑)) → (𝜒𝜓))
54rcp-NDIMI2 224 1 (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  imsubr-P3.28b.RC  270  imsubd-P3.28c  271  subimr-P3.40b  327
  Copyright terms: Public domain W3C validator