| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > syl-P3.24 | |||
| Description: Syllogism. † |
| Ref | Expression |
|---|---|
| syl-P3.24.1 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| syl-P3.24.2 | ⊢ (𝛾 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| syl-P3.24 | ⊢ (𝛾 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((𝛾 ∧ 𝜑) → 𝜑) | |
| 2 | syl-P3.24.1 | . . . . 5 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 3 | 2 | rcp-NDIMP1add1 208 | . . . 4 ⊢ ((𝛾 ∧ 𝜑) → (𝜑 → 𝜓)) |
| 4 | 1, 3 | ndime-P3.6 171 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜓) |
| 5 | syl-P3.24.2 | . . . 4 ⊢ (𝛾 → (𝜓 → 𝜒)) | |
| 6 | 5 | rcp-NDIMP1add1 208 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → (𝜓 → 𝜒)) |
| 7 | 4, 6 | ndime-P3.6 171 | . 2 ⊢ ((𝛾 ∧ 𝜑) → 𝜒) |
| 8 | 7 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (𝜑 → 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: syl-P3.24.RC 260 dsyl-P3.25 261 imsubl-P3.28a 267 imsubr-P3.28b 269 imsubd-P3.28c 271 bitrns-P3.33c 302 tsyl-P4.15 426 qimeqalla-P6-L1 698 qimeqallb-P6-L1 700 exi-P6 718 nfrgencl-L6 811 gennfrcl-L6 812 qremexd-P6 823 exiad-P6 824 axL4-P7 945 axL4ex-P7 946 exia-P7 953 qimeqallb-P7 976 qimeqalla-P7 1050 |
| Copyright terms: Public domain | W3C validator |