PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  syl-P3.24

Theorem syl-P3.24 259
Description: Syllogism.
Hypotheses
Ref Expression
syl-P3.24.1 (𝛾 → (𝜑𝜓))
syl-P3.24.2 (𝛾 → (𝜓𝜒))
Assertion
Ref Expression
syl-P3.24 (𝛾 → (𝜑𝜒))

Proof of Theorem syl-P3.24
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((𝛾𝜑) → 𝜑)
2 syl-P3.24.1 . . . . 5 (𝛾 → (𝜑𝜓))
32rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜑) → (𝜑𝜓))
41, 3ndime-P3.6 171 . . 3 ((𝛾𝜑) → 𝜓)
5 syl-P3.24.2 . . . 4 (𝛾 → (𝜓𝜒))
65rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → (𝜓𝜒))
74, 6ndime-P3.6 171 . 2 ((𝛾𝜑) → 𝜒)
87rcp-NDIMI2 224 1 (𝛾 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  syl-P3.24.RC  260  dsyl-P3.25  261  imsubl-P3.28a  267  imsubr-P3.28b  269  imsubd-P3.28c  271  bitrns-P3.33c  302  tsyl-P4.15  426  qimeqalla-P6-L1  698  qimeqallb-P6-L1  700  exi-P6  718  nfrgencl-L6  811  gennfrcl-L6  812  qremexd-P6  823  exiad-P6  824  axL4-P7  945  axL4ex-P7  946  exia-P7  953  qimeqallb-P7  976  qimeqalla-P7  1050
  Copyright terms: Public domain W3C validator