PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exiad-P6

Theorem exiad-P6 824
Description: Introduction of Existential Quantifier as Antecedent (deductive form).
Hypotheses
Ref Expression
exiad-P6.1 𝑥𝛾
exiad-P6.2 (𝛾 → Ⅎ𝑥𝜓)
exiad-P6.3 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
exiad-P6 (𝛾 → (∃𝑥𝜑𝜓))

Proof of Theorem exiad-P6
StepHypRef Expression
1 exiad-P6.1 . . 3 𝑥𝛾
2 exiad-P6.3 . . 3 (𝛾 → (𝜑𝜓))
31, 2alloverimex-P5.GENF 748 . 2 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
4 exiad-P6.2 . . . 4 (𝛾 → Ⅎ𝑥𝜓)
54qremexd-P6 823 . . 3 (𝛾 → (∃𝑥𝜓𝜓))
65ndbief-P3.14 179 . 2 (𝛾 → (∃𝑥𝜓𝜓))
73, 6syl-P3.24 259 1 (𝛾 → (∃𝑥𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndexe-P6  825
  Copyright terms: Public domain W3C validator