| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exiad-P6 | |||
| Description: Introduction of Existential Quantifier as Antecedent (deductive form). |
| Ref | Expression |
|---|---|
| exiad-P6.1 | ⊢ Ⅎ𝑥𝛾 |
| exiad-P6.2 | ⊢ (𝛾 → Ⅎ𝑥𝜓) |
| exiad-P6.3 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| exiad-P6 | ⊢ (𝛾 → (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exiad-P6.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | exiad-P6.3 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | alloverimex-P5.GENF 748 | . 2 ⊢ (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| 4 | exiad-P6.2 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥𝜓) | |
| 5 | 4 | qremexd-P6 823 | . . 3 ⊢ (𝛾 → (∃𝑥𝜓 ↔ 𝜓)) |
| 6 | 5 | ndbief-P3.14 179 | . 2 ⊢ (𝛾 → (∃𝑥𝜓 → 𝜓)) |
| 7 | 3, 6 | syl-P3.24 259 | 1 ⊢ (𝛾 → (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: ndexe-P6 825 |
| Copyright terms: Public domain | W3C validator |