PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexe-P6

Theorem ndexe-P6 825
Description: Natural Deduction Form of Existential Quantifier Elimination.
Hypotheses
Ref Expression
ndexe-P6.1 𝑦𝛾
ndexe-P6.2 𝑦𝜑
ndexe-P6.3 (𝛾 → Ⅎ𝑦𝜓)
ndexe-P6.4 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
ndexe-P6.5 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
ndexe-P6 (𝛾𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndexe-P6
StepHypRef Expression
1 ndexe-P6.5 . . 3 (𝛾 → ∃𝑥𝜑)
2 ndexe-P6.2 . . . . 5 𝑦𝜑
32cbvexpsub-P6 769 . . . 4 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
43subimr-P3.40b.RC 328 . . 3 ((𝛾 → ∃𝑥𝜑) ↔ (𝛾 → ∃𝑦[𝑦 / 𝑥]𝜑))
51, 4bimpf-P4.RC 532 . 2 (𝛾 → ∃𝑦[𝑦 / 𝑥]𝜑)
6 ndexe-P6.1 . . 3 𝑦𝛾
7 ndexe-P6.3 . . 3 (𝛾 → Ⅎ𝑦𝜓)
8 ndexe-P6.4 . . 3 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
96, 7, 8exiad-P6 824 . 2 (𝛾 → (∃𝑦[𝑦 / 𝑥]𝜑𝜓))
105, 9ndime-P3.6 171 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndexe-P7.20  845
  Copyright terms: Public domain W3C validator