| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndexe-P6 | |||
| Description: Natural Deduction Form of Existential Quantifier Elimination. |
| Ref | Expression |
|---|---|
| ndexe-P6.1 | ⊢ Ⅎ𝑦𝛾 |
| ndexe-P6.2 | ⊢ Ⅎ𝑦𝜑 |
| ndexe-P6.3 | ⊢ (𝛾 → Ⅎ𝑦𝜓) |
| ndexe-P6.4 | ⊢ (𝛾 → ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| ndexe-P6.5 | ⊢ (𝛾 → ∃𝑥𝜑) |
| Ref | Expression |
|---|---|
| ndexe-P6 | ⊢ (𝛾 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndexe-P6.5 | . . 3 ⊢ (𝛾 → ∃𝑥𝜑) | |
| 2 | ndexe-P6.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 2 | cbvexpsub-P6 769 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 4 | 3 | subimr-P3.40b.RC 328 | . . 3 ⊢ ((𝛾 → ∃𝑥𝜑) ↔ (𝛾 → ∃𝑦[𝑦 / 𝑥]𝜑)) |
| 5 | 1, 4 | bimpf-P4.RC 532 | . 2 ⊢ (𝛾 → ∃𝑦[𝑦 / 𝑥]𝜑) |
| 6 | ndexe-P6.1 | . . 3 ⊢ Ⅎ𝑦𝛾 | |
| 7 | ndexe-P6.3 | . . 3 ⊢ (𝛾 → Ⅎ𝑦𝜓) | |
| 8 | ndexe-P6.4 | . . 3 ⊢ (𝛾 → ([𝑦 / 𝑥]𝜑 → 𝜓)) | |
| 9 | 6, 7, 8 | exiad-P6 824 | . 2 ⊢ (𝛾 → (∃𝑦[𝑦 / 𝑥]𝜑 → 𝜓)) |
| 10 | 5, 9 | ndime-P3.6 171 | 1 ⊢ (𝛾 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: ndexe-P7.20 845 |
| Copyright terms: Public domain | W3C validator |