PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr-P3.40b.RC

Theorem subimr-P3.40b.RC 328
Description: Inference Form of subimr-P3.40b 327.
Hypothesis
Ref Expression
subimr-P3.40b.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subimr-P3.40b.RC ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem subimr-P3.40b.RC
StepHypRef Expression
1 subimr-P3.40b.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subimr-P3.40b 327 . 2 (⊤ → ((𝜒𝜑) ↔ (𝜒𝜓)))
43ndtruee-P3.18 183 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465  imoverbi-P4.30-L2  478  rimoverand-P4.31-L1  480  rimoveror-P4.31b  482  qcallimlv-P5  673  qceximlv-P5  674  solvedsub-P6a  711  lemma-L6.03a  728  qcalliml-P6  759  qceximl-P6  760  qcexandr-P6  761  lemma-L6.08a  773  psubleq-P6  783  psubnfr-P6  784  psubneg-P6  788  psuband-P6  792  nfrall2d-P6  819  ndexe-P6  825  dfpsub-P7  978  axL12-P7  982  qcalliml-P8  1124  qceximl-P8  1125
  Copyright terms: Public domain W3C validator