| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subimr-P3.40b.RC | |||
| Description: Inference Form of subimr-P3.40b 327. † |
| Ref | Expression |
|---|---|
| subimr-P3.40b.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subimr-P3.40b.RC | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subimr-P3.40b.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | subimr-P3.40b 327 | . 2 ⊢ (⊤ → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: oroverim-P4.28-L1 465 imoverbi-P4.30-L2 478 rimoverand-P4.31-L1 480 rimoveror-P4.31b 482 qcallimlv-P5 673 qceximlv-P5 674 solvedsub-P6a 711 lemma-L6.03a 728 qcalliml-P6 759 qceximl-P6 760 qcexandr-P6 761 lemma-L6.08a 773 psubleq-P6 783 psubnfr-P6 784 psubneg-P6 788 psuband-P6 792 nfrall2d-P6 819 ndexe-P6 825 dfpsub-P7 978 axL12-P7 982 qcalliml-P8 1124 qceximl-P8 1125 |
| Copyright terms: Public domain | W3C validator |