| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.08a | |||
| Description: Equivalency of
definitions lemma.
'𝑦' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L6.08a | ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L6.07a 772 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | 1 | subimr-P3.40b.RC 328 | . . 3 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 3 | 2 | suballinf-P5 594 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 4 | lemma-L6.07a 772 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 5 | 3, 4 | bitrns-P3.33c.RC 303 | 1 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: dfpsubalt-P6 774 |
| Copyright terms: Public domain | W3C validator |