PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfpsubalt-P6

Theorem dfpsubalt-P6 774
Description: Alternate Definition of Proper Substitution.

'𝑦' cannot occur in either '𝜑' or 𝑡'.

Assertion
Ref Expression
dfpsubalt-P6 ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem dfpsubalt-P6
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 lemma-L6.08a 773 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
31, 2bitrns-P3.33c.RC 303 1 ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubneg-P6  788
  Copyright terms: Public domain W3C validator