| Step | Hyp | Ref
| Expression |
| 1 | | df-psub-D6.2 716 |
. 2
⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
| 2 | | psubneg-P6-L1 787 |
. . . . 5
⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)
↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧
𝜑)) |
| 3 | 2 | subimr-P3.40b.RC 328 |
. . . 4
⊢ ((𝑦 = 𝑡 →
∀𝑥(𝑥
= 𝑦 → ¬ 𝜑)) ↔ (𝑦 =
𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 4 | 3 | suballinf-P5 594 |
. . 3
⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))
↔ ∀𝑦(𝑦 = 𝑡 → ¬
∃𝑥(𝑥
= 𝑦 ∧ 𝜑))) |
| 5 | | psubneg-P6-L1 787 |
. . 3
⊢ (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔
¬ ∃𝑦(𝑦 = 𝑡 ∧
∃𝑥(𝑥
= 𝑦 ∧ 𝜑))) |
| 6 | 4, 5 | bitrns-P3.33c.RC 303 |
. 2
⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))
↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧
∃𝑥(𝑥
= 𝑦 ∧ 𝜑))) |
| 7 | | dfpsubalt-P6 774 |
. . . 4
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 8 | 7 | bisym-P3.33b.RC 299 |
. . 3
⊢ (∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔
[𝑡 / 𝑥]𝜑) |
| 9 | 8 | subneg-P3.39.RC 324 |
. 2
⊢ (¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔
¬ [𝑡 / 𝑥]𝜑) |
| 10 | 1, 6, 9 | dbitrns-P4.16.RC 429 |
1
⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 /
𝑥]𝜑) |