PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubneg-P6

Theorem psubneg-P6 788
Description: Proper Substitution Over Negation.
Assertion
Ref Expression
psubneg-P6 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)

Proof of Theorem psubneg-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))
2 psubneg-P6-L1 787 . . . . 5 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
32subimr-P3.40b.RC 328 . . . 4 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
43suballinf-P5 594 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
5 psubneg-P6-L1 787 . . 3 (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
64, 5bitrns-P3.33c.RC 303 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
7 dfpsubalt-P6 774 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
87bisym-P3.33b.RC 299 . . 3 (∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ [𝑡 / 𝑥]𝜑)
98subneg-P3.39.RC 324 . 2 (¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ [𝑡 / 𝑥]𝜑)
101, 6, 9dbitrns-P4.16.RC 429 1 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubim-P6-L2  790  psuband-P6  792  psubex2v-P6  797
  Copyright terms: Public domain W3C validator