PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dbitrns-P4.16.RC

Theorem dbitrns-P4.16.RC 429
Description: Inference Form of dbitrns-P4.16 428.
Hypotheses
Ref Expression
dbitrns-P4.16.RC.1 (𝜑𝜓)
dbitrns-P4.16.RC.2 (𝜓𝜒)
dbitrns-P4.16.RC.3 (𝜒𝜗)
Assertion
Ref Expression
dbitrns-P4.16.RC (𝜑𝜗)

Proof of Theorem dbitrns-P4.16.RC
StepHypRef Expression
1 dbitrns-P4.16.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 dbitrns-P4.16.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
5 dbitrns-P4.16.RC.3 . . . 4 (𝜒𝜗)
65ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
72, 4, 6dbitrns-P4.16 428 . 2 (⊤ → (𝜑𝜗))
87ndtruee-P3.18 183 1 (𝜑𝜗)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverbi-P4.28b  469  imoverbi-P4.30b  479  biasandor-P4.34a  491  cbvexv-P5  660  nfrleq-P6  687  cbvex-P6  752  qcexandr-P6  761  qcexandl-P6  762  psubleq-P6  783  psubnfr-P6  784  psubneg-P6  788  psuband-P6  792  psubspliteq-P6  800  dfpsub-P7  978
  Copyright terms: Public domain W3C validator