PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  tbitrns-P4.17

Theorem tbitrns-P4.17 430
Description: Triple Transitive Rule for Biconditional.
Hypotheses
Ref Expression
tbitrns-P4.17.1 (𝛾 → (𝜑𝜓))
tbitrns-P4.17.2 (𝛾 → (𝜓𝜒))
tbitrns-P4.17.3 (𝛾 → (𝜒𝜗))
tbitrns-P4.17.4 (𝛾 → (𝜗𝜏))
Assertion
Ref Expression
tbitrns-P4.17 (𝛾 → (𝜑𝜏))

Proof of Theorem tbitrns-P4.17
StepHypRef Expression
1 tbitrns-P4.17.1 . . 3 (𝛾 → (𝜑𝜓))
2 tbitrns-P4.17.2 . . 3 (𝛾 → (𝜓𝜒))
3 tbitrns-P4.17.3 . . 3 (𝛾 → (𝜒𝜗))
41, 2, 3dbitrns-P4.16 428 . 2 (𝛾 → (𝜑𝜗))
5 tbitrns-P4.17.4 . 2 (𝛾 → (𝜗𝜏))
64, 5bitrns-P3.33c 302 1 (𝛾 → (𝜑𝜏))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  tbitrns-P4.17.RC  431
  Copyright terms: Public domain W3C validator