PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dbitrns-P4.16

Theorem dbitrns-P4.16 428
Description: Doubled Transitive Rule for Biconditional.
Hypotheses
Ref Expression
dbitrns-P4.16.1 (𝛾 → (𝜑𝜓))
dbitrns-P4.16.2 (𝛾 → (𝜓𝜒))
dbitrns-P4.16.3 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
dbitrns-P4.16 (𝛾 → (𝜑𝜗))

Proof of Theorem dbitrns-P4.16
StepHypRef Expression
1 dbitrns-P4.16.1 . . 3 (𝛾 → (𝜑𝜓))
2 dbitrns-P4.16.2 . . 3 (𝛾 → (𝜓𝜒))
31, 2bitrns-P3.33c 302 . 2 (𝛾 → (𝜑𝜒))
4 dbitrns-P4.16.3 . 2 (𝛾 → (𝜒𝜗))
53, 4bitrns-P3.33c 302 1 (𝛾 → (𝜑𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dbitrns-P4.16.RC  429  tbitrns-P4.17  430
  Copyright terms: Public domain W3C validator