PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  tsyl-P4.15.RC

Theorem tsyl-P4.15.RC 427
Description: Inference form of tsyl-P4.15 426.
Hypotheses
Ref Expression
tsyl-P4.15.RC.1 (𝜑𝜓)
tsyl-P4.15.RC.2 (𝜓𝜒)
tsyl-P4.15.RC.3 (𝜒𝜗)
tsyl-P4.15.RC.4 (𝜗𝜏)
Assertion
Ref Expression
tsyl-P4.15.RC (𝜑𝜏)

Proof of Theorem tsyl-P4.15.RC
StepHypRef Expression
1 tsyl-P4.15.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 tsyl-P4.15.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
5 tsyl-P4.15.RC.3 . . . 4 (𝜒𝜗)
65ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
7 tsyl-P4.15.RC.4 . . . 4 (𝜗𝜏)
87ndtruei-P3.17 182 . . 3 (⊤ → (𝜗𝜏))
92, 4, 6, 8tsyl-P4.15 426 . 2 (⊤ → (𝜑𝜏))
109ndtruee-P3.18 183 1 (𝜑𝜏)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465
  Copyright terms: Public domain W3C validator