PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  tbitrns-P4.17.RC

Theorem tbitrns-P4.17.RC 431
Description: Inference Form of tbitrns-P4.17 430.
Hypotheses
Ref Expression
tbitrns-P4.17.RC.1 (𝜑𝜓)
tbitrns-P4.17.RC.2 (𝜓𝜒)
tbitrns-P4.17.RC.3 (𝜒𝜗)
tbitrns-P4.17.RC.4 (𝜗𝜏)
Assertion
Ref Expression
tbitrns-P4.17.RC (𝜑𝜏)

Proof of Theorem tbitrns-P4.17.RC
StepHypRef Expression
1 tbitrns-P4.17.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 tbitrns-P4.17.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
5 tbitrns-P4.17.RC.3 . . . 4 (𝜒𝜗)
65ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
7 tbitrns-P4.17.RC.4 . . . 4 (𝜗𝜏)
87ndtruei-P3.17 182 . . 3 (⊤ → (𝜗𝜏))
92, 4, 6, 8tbitrns-P4.17 430 . 2 (⊤ → (𝜑𝜏))
109ndtruee-P3.18 183 1 (𝜑𝜏)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  biasandor-P4.34a  491  dfnfreealt-P6  683  nfrneg-P6  688  solvesub-P6a  704  lemma-L6.02a  726  psuball2v-P6  796  psubex2v-P6  797  psubsplitelof-P6  801  dfnfree-P7  968
  Copyright terms: Public domain W3C validator