| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > tbitrns-P4.17.RC | |||
| Description: Inference Form of tbitrns-P4.17 430. † |
| Ref | Expression |
|---|---|
| tbitrns-P4.17.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| tbitrns-P4.17.RC.2 | ⊢ (𝜓 ↔ 𝜒) |
| tbitrns-P4.17.RC.3 | ⊢ (𝜒 ↔ 𝜗) |
| tbitrns-P4.17.RC.4 | ⊢ (𝜗 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| tbitrns-P4.17.RC | ⊢ (𝜑 ↔ 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbitrns-P4.17.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | tbitrns-P4.17.RC.2 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 5 | tbitrns-P4.17.RC.3 | . . . 4 ⊢ (𝜒 ↔ 𝜗) | |
| 6 | 5 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜗)) |
| 7 | tbitrns-P4.17.RC.4 | . . . 4 ⊢ (𝜗 ↔ 𝜏) | |
| 8 | 7 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜗 ↔ 𝜏)) |
| 9 | 2, 4, 6, 8 | tbitrns-P4.17 430 | . 2 ⊢ (⊤ → (𝜑 ↔ 𝜏)) |
| 10 | 9 | ndtruee-P3.18 183 | 1 ⊢ (𝜑 ↔ 𝜏) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: biasandor-P4.34a 491 dfnfreealt-P6 683 nfrneg-P6 688 solvesub-P6a 704 lemma-L6.02a 726 psuball2v-P6 796 psubex2v-P6 797 psubsplitelof-P6 801 dfnfree-P7 968 |
| Copyright terms: Public domain | W3C validator |