| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dfnfree-P7 | |||
| Description: df-nfree-D6.1 682 Derived From Natural Deduction Rules.
This definition is not valid with intuitionist logic. |
| Ref | Expression |
|---|---|
| dfnfree-P7 | ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnfreealt-P7 967 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | imasor-P4.32a 487 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)) | |
| 3 | allnegex-P7 958 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 4 | 3 | bisym-P3.33b.RC 299 | . . 3 ⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) |
| 5 | 4 | suborl-P3.43a.RC 347 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) |
| 6 | orcomm-P3.37 319 | . 2 ⊢ ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 7 | 1, 2, 5, 6 | tbitrns-P4.17.RC 431 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |