PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfnfree-P7

Theorem dfnfree-P7 968
Description: df-nfree-D6.1 682 Derived From Natural Deduction Rules.

This definition is not valid with intuitionist logic.

Assertion
Ref Expression
dfnfree-P7 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))

Proof of Theorem dfnfree-P7
StepHypRef Expression
1 dfnfreealt-P7 967 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 imasor-P4.32a 487 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
3 allnegex-P7 958 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
43bisym-P3.33b.RC 299 . . 3 (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑)
54suborl-P3.43a.RC 347 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑))
6 orcomm-P3.37 319 . 2 ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
71, 2, 5, 6tbitrns-P4.17.RC 431 1 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-or 144  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator