| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imasor-P4.32a | |||
| Description: '→' in Terms of '∨'. |
| Ref | Expression |
|---|---|
| imasor-P4.32a | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasor-P4.32-L1 485 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜑 ∨ 𝜓)) | |
| 2 | imasor-P4.32-L2 486 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: imasand-P4.33a 489 biasandor-P4.34a 491 qimeqallhalf-P5 609 qimeqex-P5-L1 610 dfnfreealt-P6 683 psubim-P6-L2 790 dfnfree-P7 968 |
| Copyright terms: Public domain | W3C validator |