PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imasor-P4.32a

Theorem imasor-P4.32a 487
Description: '' in Terms of ''.
Assertion
Ref Expression
imasor-P4.32a ((𝜑𝜓) ↔ (¬ 𝜑𝜓))

Proof of Theorem imasor-P4.32a
StepHypRef Expression
1 imasor-P4.32-L1 485 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
2 imasor-P4.32-L2 486 . 2 ((¬ 𝜑𝜓) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  imasand-P4.33a  489  biasandor-P4.34a  491  qimeqallhalf-P5  609  qimeqex-P5-L1  610  dfnfreealt-P6  683  psubim-P6-L2  790  dfnfree-P7  968
  Copyright terms: Public domain W3C validator