PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imasor-P4.32-L2

Theorem imasor-P4.32-L2 486
Description: Lemma for imasor-P4.32a 487 and imasorint-P4.32b 488.
Assertion
Ref Expression
imasor-P4.32-L2 ((¬ 𝜑𝜓) → (𝜑𝜓))

Proof of Theorem imasor-P4.32-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → ¬ 𝜑)
21impoe-P4.4a 377 . 2 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → (𝜑𝜓))
3 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑𝜓) ∧ 𝜓) → 𝜓)
43axL1-P3.21 252 . 2 (((¬ 𝜑𝜓) ∧ 𝜓) → (𝜑𝜓))
5 rcp-NDASM1of1 192 . 2 ((¬ 𝜑𝜓) → (¬ 𝜑𝜓))
62, 4, 5rcp-NDORE2 235 1 ((¬ 𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  imasor-P4.32a  487  imasorint-P4.32b  488
  Copyright terms: Public domain W3C validator