| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDORE2 | |||
| Description: ∨ Elimination Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDORE2.1 | ⊢ ((𝛾₁ ∧ 𝜑) → 𝜒) |
| rcp-NDORE2.2 | ⊢ ((𝛾₁ ∧ 𝜓) → 𝜒) |
| rcp-NDORE2.3 | ⊢ (𝛾₁ → (𝜑 ∨ 𝜓)) |
| Ref | Expression |
|---|---|
| rcp-NDORE2 | ⊢ (𝛾₁ → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDORE2.1 | . 2 ⊢ ((𝛾₁ ∧ 𝜑) → 𝜒) | |
| 2 | rcp-NDORE2.2 | . 2 ⊢ ((𝛾₁ ∧ 𝜓) → 𝜒) | |
| 3 | rcp-NDORE2.3 | . 2 ⊢ (𝛾₁ → (𝜑 ∨ 𝜓)) | |
| 4 | 1, 2, 3 | ndore-P3.12 177 | 1 ⊢ (𝛾₁ → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 |
| This theorem is referenced by: orcomm-P3.37-L1 318 orassoc-P3.38-L1 320 orassoc-P3.38-L2 321 orasim-P3.48-L2 360 profeliml-P4.5a 385 profelimr-P4.5b 387 sepimorr-P4.9c 412 sepimandl-P4.9d 415 idorfalsel-P4.20a 440 idempotor-P4.25b 451 dmorgbrev-L4.4 455 andoveror-P4.27-L2 460 oroverand-P4.27-L3 462 oroverim-P4.28-L2 466 imasor-P4.32-L1 485 imasor-P4.32-L2 486 biasandorint-P4.34b 492 peirce-P4.40 511 exclmid2peirce-P4.41a 512 qimeqex-P7-L1 1054 |
| Copyright terms: Public domain | W3C validator |