PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORE2

Theorem rcp-NDORE2 235
Description: Elimination Recipe.
Hypotheses
Ref Expression
rcp-NDORE2.1 ((𝛾₁𝜑) → 𝜒)
rcp-NDORE2.2 ((𝛾₁𝜓) → 𝜒)
rcp-NDORE2.3 (𝛾₁ → (𝜑𝜓))
Assertion
Ref Expression
rcp-NDORE2 (𝛾₁𝜒)

Proof of Theorem rcp-NDORE2
StepHypRef Expression
1 rcp-NDORE2.1 . 2 ((𝛾₁𝜑) → 𝜒)
2 rcp-NDORE2.2 . 2 ((𝛾₁𝜓) → 𝜒)
3 rcp-NDORE2.3 . 2 (𝛾₁ → (𝜑𝜓))
41, 2, 3ndore-P3.12 177 1 (𝛾₁𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  orcomm-P3.37-L1  318  orassoc-P3.38-L1  320  orassoc-P3.38-L2  321  orasim-P3.48-L2  360  profeliml-P4.5a  385  profelimr-P4.5b  387  sepimorr-P4.9c  412  sepimandl-P4.9d  415  idorfalsel-P4.20a  440  idempotor-P4.25b  451  dmorgbrev-L4.4  455  andoveror-P4.27-L2  460  oroverand-P4.27-L3  462  oroverim-P4.28-L2  466  imasor-P4.32-L1  485  imasor-P4.32-L2  486  biasandorint-P4.34b  492  peirce-P4.40  511  exclmid2peirce-P4.41a  512  qimeqex-P7-L1  1054
  Copyright terms: Public domain W3C validator