PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orassoc-P3.38-L2

Theorem orassoc-P3.38-L2 321
Description: Lemma for orassoc-P3.38 322.
Assertion
Ref Expression
orassoc-P3.38-L2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))

Proof of Theorem orassoc-P3.38-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → 𝜑)
21ndorir-P3.11 176 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → (𝜑𝜓))
32ndorir-P3.11 176 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → ((𝜑𝜓) ∨ 𝜒))
4 rcp-NDASM3of3 197 . . . . 5 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒) ∧ 𝜓) → 𝜓)
54ndoril-P3.10 175 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒) ∧ 𝜓) → (𝜑𝜓))
65ndorir-P3.11 176 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒) ∧ 𝜓) → ((𝜑𝜓) ∨ 𝜒))
7 rcp-NDASM3of3 197 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒) ∧ 𝜒) → 𝜒)
87ndoril-P3.10 175 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒) ∧ 𝜒) → ((𝜑𝜓) ∨ 𝜒))
9 rcp-NDASM2of2 194 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → (𝜓𝜒))
106, 8, 9rcp-NDORE3 236 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))
11 rcp-NDASM1of1 192 . 2 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜓𝜒)))
123, 10, 11rcp-NDORE2 235 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  orassoc-P3.38  322
  Copyright terms: Public domain W3C validator